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Many natural and technological applications generate time-ordered sequences of networks, defined over a
fixed set of nodes; for example, time-stamped information about “who phoned who” or “who came into contact
with who” arise naturally in studies of communication and the spread of disease. Concepts and algorithms
for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B
interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass
from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network
given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that
classic centrality measures from the static setting can be extended in a computationally convenient manner. In
particular, communicability indices can be computed to summarize the ability of each node to broadcast and
receive information. The computations involve basic operations in linear algebra, and the asymmetry caused
by time’s arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative
examples are given for both synthetic and real-world communication data sets. We also discuss the use of the

new centrality measures for real-time monitoring and prediction.
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I. INTRODUCTION

At the heart of network science are the well-established
mathematical fields of deterministic and random graph theory,
with concepts such as connectedness, pathlength, diameter,
degree, and clique playing key roles [1,2]. The motivation for
this work is that a new type of time-dependent network-based
object is emerging from a range of digital technologies that
requires a fundamentally different way of thinking.

InFig. 1 we show a simple example of an evolving network,
where undirected connections between a fixed set of seven
nodes are recorded over three days. If we regard the links
as representing communication, for example, by telephone or
email, then we see that A may pass a message to C through
the links A <+ B and B <+ G on day 1 and then through
the links G < E and E < C on day 2. However, there
is no way for C to pass a message to A. Analogously, if
the links represent physical proximity, then A may pass an
infection to C, but C cannot cause A to be infected. This
asymmetry, which arises even though each individual network
is symmetric, is caused by the arrow of time. It is clear that
simply aggregating the individual networks would present a
very misleading summary. This highlights a fundamental gap
between the static and dynamic cases and points out the need
for a theory of evolving networks that

(1) Deals with the time-ordering inherent in the edge lists
when considering communication around the network and

(2) Respects the inherent asymmetry imposed by the arrow
of time, even when each individual snapshot consists of an
undirected network.

Many application areas give rise to connectivity patterns
that change over time in this manner. As well as the traditional
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context of individual-to-individual contacts in epidemiology
[3], the digital revolution is generating novel large-scale
examples, including

(1) Networks of mobile users with a link denoting current
“Interaction,” i.e., either copresence in a location or logged
contact through their mobile devices [4]

(2) Networks of online social users (e.g., Facebook) inter-
acting through messaging [4] or online chatting systems (e.g.,
MSN) [5]

(3) Networks of travelers, vehicles, or available routes
defined over a dynamic transportation infrastructure [6—8]

(4) Networks describing transient social interactions over
cyberspace [9]

(5) Networks describing individuals’ attendance at regu-
larly scheduled events over time [10]

(6) Correlated neural activity in response to a functional
task [11].

In this work, we show how centrality concepts that have
proved useful for determining important nodes in static net-
works can be extended to this dynamic setting. Our approach is
related to that of Refs. [9,12,13], in the sense that static graph
concepts are directly generalized in a manner that respects
the time dependency, but we take a walk-counting viewpoint
and focus on the type of centrality measures that are popular
for social networks [14]. Earlier studies have also dealt with
time-respecting paths. Berman [7] looked at a more restricted
class of dynamic networks, where each edge has a single start
time and a single finish time, and focused on issues such
as the minimum number of nodes that must be deleted in
order to disconnect all paths between a given pair of nodes.
Further algorithmic and combinatorial issues were considered
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FIG. 1. (Color online) Simple example of an evolving network.

in Ref. [15] for the case where each edge exists at a single
instant of time. More recent work in Ref. [16] deals with
the setting where each edge may exist at more than one time
instance, and focuses on how quickly information or disease
may spread across a contact network, whereas Ref. [17] looks
at identifying edges that have the potential to pass information
while itis fresh. We also note that dynamic networks are treated
in Ref. [18], but the emphasis in that work is to discover
communities, and a different approach is used, where extra
links are added to represent the passage of time.

Let us emphasize at this stage that unlike in the well-
studied “network growth” context, where new nodes and
accompanying edges are accumulated and only the final,
aggregate network is of interest [2,19], we are concerned here
with a different time-dependent scenario where the population
of nodes remains fixed from the outset, and the graph evolves
through the appearance (birth) or the deletion (death) of
edges.

II. KATZ CENTRALITY

To motivate our work we briefly discuss the case of a single,
static network. Given a directed graph G defined over N nodes,
we let A denote the corresponding N-by-N binary adjacency
matrix, where a nonzero i,j entry records the presence of a
link from node i to node j. We allow for A;; # Aj;, so that
the adjacency matrix may be unsymmetric.

Numerous measures have been proposed for quantifying
important features of a network, many of them originating
from the field of social network analysis [20]. We consider
here the issue of assigning an importance ranking to each
node, and focus on the idea of Katz [14], which has widely
influenced the study of static social networks [21-23].

Although the definition can be derived by viewing a link
as a “vote of confidence,” in the style of Google’s PageRank
algorithm [ [23], Chapter 7], we summarize here the original
derivation of Katz. To quantify the propensity for node i to
communicate, or interact, with node j, we may count how
many walks of length w = 1,2,3, ... there are from i to j.
We may then combine these counts into a single, cumulative
total over all w. Allowing for the fact that shorter walks are
generally more important (since, for example, the noise or
cost of a transmission may increase with length), it makes
sense to scale the counts according to the walk length. A
particularly attractive choice is to scale walks of length w by a
factor a”, where a is a suitably chosen scalar. A basic identity
from graph theory shows that the kth power of the adjacency
matrix has an i, j element that counts the number of walks of
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length w from node i to node j. Introducing the identity matrix
I € R¥*N for convenience, this leads us to the expansion
I +aA+a’A%? 4+ a*A3 ..., which converges to the resolvent
function (I — a)™!' when a < 1/p(A). Here p(-) denotes the
spectral radius, that is, the largest eigenvalue in modulus. Since
I - aA)“)l-_,- summarizes how well information can pass
from node i to node j, the nth row sum

N
Y I —aA) u o))

k=1

is a centrality measure for node n. Following Newman [23]
we refer to this as the Karz centrality.

We emphasize that this centrality measure is based on the
combinatorics of walks, which allow nodes and edges to be
reused during a traversal, rather than paths or shortest paths.
A practical advantage of the walk-counting approach is that the
combinatorics can be conveniently described and implemented
in terms of basic operations in linear algebra. Two further
justifications are that (a) information does not necessarily flow
along paths or geodesics [21,22,24] and (b) walk counting
is more tolerant of errors (missing and spurious edges) than
path counting. We also note that a related walk-based measure
of centrality was proposed for this static network case in
Ref. [25], and the idea has been shown to lead to very
powerful tools that are useful across a range of application
areas [26-29].

In the case of a directed network, the Katz centrality (1)
quantifies the ability of node n to send out information
along the directed links. By an entirely analogous argument,
we could use a column sum instead of a row sum (or,
equivalently, replace the adjacency matrix by its transpose) to
give a measure that quantifies the ability of node n to acquire
information:

N
> (1 = aA) ©)

k=1

III. DYNAMIC CENTRALITIES

We now return to our main theme of dynamic networks.
To formalize our ideas, given a set of N nodes we consider
an ordered sequence {G[k]} fork =0,1,2,...,M, where each
G is an unweighted graph defined over those nodes. We
think of a corresponding ordered sequence of time points 7y <
t] < --- < ty, so that G records the state of the network at
time #;. Each graph may then be represented by its adjacency
matrix AKX,

To address the question of how well information can be
passed between pairs of nodes, we generalize the static graph
concept of a walk as follows.

Definition 1. A dynamic walk of length w from node i,
to node i, consists of a sequence of edges i} — in,ip —
i3,...,0y = Iy+1 and a nondecreasing sequence of times
ty, <ty, < -+ < 1, such that Al[;’fi]mﬂ # 0. We also define the
lifetime of this walk to be 7., — f,,.

We note that an analogous definition of a dynamic path
can be made by insisting that no node is visited more than
once—that concept was developed recently in Ref. [4], and, as
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FIG. 2. (Color online) Comparison of centralities synthetically generated network of 1001 nodes, where node number 1001 is designed to
have average activity, as measured by the aggregate degree, but enjoys high-quality connections at each time point. Upper pictures scatter the
broadcast and receive centralities (5) with node 1001 circled. Lower pictures show histograms of Katz centrality for the binarized aggregate
network, with centrality for node 1001 marked with a vertical dashed line.

described in Sec. I, time-respecting paths for different temporal
models have appeared in earlier work [7,15-17].

We emphasize that the sequence of times ?,, .1, ...t in
Definition 1 must be nondecreasing, in order to respect the
arrow of time, but

(1) Repeated times are allowed: For example, if r| < r, =
r3 < ry4 then precisely two edges are followed at time ¢,,, and

(2) Times are not required to be consecutive: For example, if
rp > ri; + 1 then the networks corresponding to times between
t,, and t,, have not been used during the walk.

Of course, depending on the application area, it may be
reasonable to alter these features, forcing at most one edge per
time level and/or forcing time levels to be consecutive. The
ideas presented here could be adjusted accordingly.

Our key observation, which generalizes the static walk-
counting identity mentioned in Sec. II, is that the matrix
product AUIAl2T... AWl has i, j element that counts the
number of dynamic walks of length w from node i to node j
on which the mth step of the walk takes place at time ¢, .

Now, in this new dynamic setting, we may apply the
arguments that were used to derive the Katz centrality
measure (1). We wish to quantify the propensity for node i
to communicate, or interact, with node j. For each length
w=1,2,..., we may count the number of dynamic walks
from i to j, downweighting walks of length w by a factor a®.

In the matrix multiplication framework, this leads to the task
of summing all products of the form

a® AU ARl Al vhere rp K < -v e Ky 3)

These arguments motivate the matrix product

Q= (I —aA) (1 — g A1 (T — gAMYL (@)

The use of the identity matrices in (4) is crucial in our target
case of large, sparse networks—it allows a message to “wait”
at a node until a suitable connection appears at a later time.

Overall, as required, the matrix Q records the sum of
all terms of the form (3). We may therefore use Q;; as our
summary of how well information can be passed from node i
to node j. The nth row and column sums

N N
C’tl)roadcast = Z Q. and Crr'eceive — Z Oin 5)
k=1 k=1
are centrality measures that quantify how effectively node n
can broadcast and receive messages, respectively.'

! An alternative is to specify k # n in the summations, so that closed
walks are not included. However, such closed walks can play an
important role as indicators of centrality [30].
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FIG. 3. (Color online) Adjacency matrices for the MIT telecommunication data, symmetrized and aggregated into 13 sets of 28-day
windows. Each plot shows the nonzero pattern: A dot in row i and column j represents at least one telephone interaction between those

individuals.

Because we are interested in the relative values of the
centrality measures across all nodes, rather than their absolute
sizes, we are free to multiply QO by any positive scalar.
We can use this freedom to avoid under or overflow in
the computations. A ngrmalized version, say, Q, could be
computed as the result OM] of an iteration such as

~ug QR —aAM)T!
| QW=1(1 — a AW)=1 |’

k=0,1,2, ..., M,

with Q- = I, where || - || denotes any convenient matrix
norm. In our computations we use the Euclidean norm.
These new centralities are a direct generalization of Katz
centralities (1) and (2) to the case of more than one time point.
Two features of this new approach are immediately appar-
ent.
(1) The basic computational tasks are linear system solves,
which are convenient and efficient for large, sparse networks.
(2) The inherent asymmetry caused by the dynamics is
captured directly through the noncommutativity of matrix
multiplication.
To help understand the role of the downweighting parameter
a, we first note that for a fixed collection of network data, in
the limit @ — O the centrality measures reduce to multiples of

the aggregate out and in degrees, shifted by unity:

Cbroadcast -1 N M
i S5 (o
a—0+ a
k=1 \ p=0 'k
i N M
) Creceive __ 1
lim 4+—— = Z AlP!
a—0*t a
k=1 \ p=0 kn

At the other extreme, to guarantee that each resolvent
(I —aA¥N)~! in (4) exists, we require that a < 1/p(Al)),
for all s. Furthermore, choosing a close to 1/ max, p(Al!)
will cause the corresponding time #; to dominate the overall
communicability matrix Q. In practice, a suitable choice of
a would be sufficiently below 1/ max, p(A)) that the results
are not sensitive to small changes in a and sufficiently above
zero that they do not collapse to the shifted aggregate out and
in degrees.

Let us consider how the asymmetry of Q arises, and
hence that between the centrality measures, in the case
of an evolving undirected graph. Here all the adjacency
matrices are symmetric. For any N-by-N matrix, B, we
define S(B) := %(B + BT) and AS(B) = %(B — BT) to be
the projections of B onto the space of symmetric matrices and
the orthogonal space of antisymmetric matrices, respectively.
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FIG. 4. (Color online) Daily MIT telecommunication data. Upper right: Total activity per day. Upper left: Broadcast versus receive centrality;
corr = 0.14, T = 0.15, top 20 overlap size 4. Lower left: Broadcast centrality versus total degree; corr = 0.50, T = 0.34, top 20 overlap size 9.
Lower right: Receive centrality versus total degree; corr = 0.28, T = 0.28, top 20 overlap size 6.

The antisymmetric part of Q governs the differences between
the column and row sums of Q, since

2A5(9).1= (Cbroadeast _ Creceive7

where 1=(1,1,...,1)7, and (Cbroadeast — (Cproadeast
CProadeasthT are N vectors, with C™*® defined analogously.

Working with the nonnormalized version of Q in (4), we
have

M M M
Q=1T+a) AP +a’y " AVIAPT 4 0@?).
p=0 p=0p'=p

It follows that

M
SQ=1I+ay A%+ 0@,
p=0

©6)
and
M M
2A5(Q =a*)_ > AV AP+ 0@, ()

p=0 p'=p+1

where [A,B] := AB — BA denotes the commutator of ma-
trices A and B. Since each separate graph is undirected, this
shows that the leading antisymmetric terms arise only from
interactions over distinct pair of time steps.

We emphasize that this work focuses on the case of a
fixed set of data. In some applications, AK! will itself be an
aggregate of activity over a time window; for example, in

Secs. IVB and IV C we consider daily telephone and email
communication. If we reduce the time window down to hours,
minutes, seconds, etc., then, before we can think about the
asymptotic limit, we must first be clear about the nature of the
data.

If we consider email communication, and assume that
messages are passed instantaneously, then in the limit of
time resolution the communicability matrix Q would not
change—we reach a point where no further walks can be
created through refinement. In the linear algebra setting of (4)
only empty networks are added to the sequence and no new
nonidentity factors will arise. In this ultra-high-frequency
regime, if the edges are undirected, it would be natural to
replace (4) with the “at most one link per time window™’
version

Q:=U +aA[0])(I +aA[1])' Y —i—aA[M]),

in order to eliminate trivial closed walks such as i + j > i
that occur over a single window. However, the idea that the
finest time level gives the most accurate picture must be treated
with caution—in the email context the order in which messages
are read or acted upon does not necessarily reflect the order of
arrival.

By contrast, suppose that dynamic edges represent tele-
phone communications with prescribed start and finish times.
As we refine the time window in this setting beyond the point
where new information is added, we simply start to collect
contiguous repeats of a finite number of adjacency matrices.

046120-5



GRINDROD, HIGHAM, PARSONS, AND ESTRADA

, Broadcast
10 :
0 °
10
&
3 56}
o -2 s °
10 o S0
1l R .
& s o4
® L ]
107 .
107"° 10° 10°
a=0.1
Broadcast
10"
e’
100 o l";;-
:;- ° .&
pa . . 0‘ ¢ '{
o 1 .
S 10 Loy
Il . oo
m [ ]
107 .
107 —
10
a=0.05

PHYSICAL REVIEW E 83, 046120 (2011)

Receive

0.05

© 10-5
107"° 10°
a=0.1
Receive
10"
0 o ’
10 " ’-..,'. °
) "::.W
5 10—1 .'n}. . *
o | gee®
1l °
]
107
10_3 : 5 ‘ 0
10” 10
a=0.05

FIG. 5. (Color online) Daily MIT telecommunication data. Upper: a = 0.1 versus a = 0.05; for broadcast corr = 0.93 and v = 0.82, for
receive corr = 0.98 and v = 0.87. Respective top 20 overlap sizes are 14 and 16. Lower: a = 0.05 versus a = 0.01; for broadcast corr = 0.82
and T = 0.57, for receive, corr = 0.81 and 7 = 0.54. Respective top 20 overlap sizes are 16 and 11.

In this limit, suppose we allow the downweighting parameter
a to scale inversely with the length of the time window.
Then letting A denote the adjacency matrix representing the
connectivity pattern that remains constant over some period
(because no calls are started or finished over this time), we
will be computing as a factor in (4) a quantity of the form

. a \°K
Kh_r)réo (1 ?A) = exp(aA).
Measures based on the scaled matrix exponential have been
studied extensively (see, for example, Ref. [31]), and we see
that, in this asymptotic limit, the dynamic communicability
matrix Q is formed as a product of such factors.

We also mention that the definition (4) extends readily to
the case where a varies with the time point; this might be
natural, for example, if nonuniform time windows are used or
if some external property, such as the cost of making a phone
call or the likelihood of a batch of spam email, varies over
time.

IV. COMPUTATIONAL TESTS

In this section we describe some illustrative computations
with the new dynamic centralities. For convenience, we let apax
denote the upper limit 1/ max, p(A"!) for the downweighting
parameter a. In order to compare results with those for the
Katz centralities we let A* denote the binarized version of the

aggregated adjacency matrix, so (A*);; = 1 if (A¥);; = 1 for
any k, and (A*);; = 0 otherwise. We then let a7, denote the
upper limit 1/p(A*).

A. Synthetic data

Figure 2 shows a proof-of-principle test of the ideas
behind (4). Here we used N = 1001 nodes and simulated
networks at 31 time points, that is, a month of daily data.
At each time point, for nodes 1 to 1000 we constructed,
independently, a classical, undirected, Erdos-Renyi random
graph—each was chosen uniformly from the collection of all
graphs with 1000 nodes and 1000 edges. Then at each time the
final node 1001 was connected to the two nodes with largest
degree. In this way, node number 1001 is distinguished only
by the time-sensitive “quality” of its links—at each time #
it has a degree that matches that of the average node, and it
will never be among the highest degree nodes at any time; so
any static or aggregative measure is likely to fail to identify
this node as being special. The upper pictures in the figure
scatter the (normalized) broadcast and receive centralities (5)
for each node, with node 1001 identified by a circle. In
this case, ama.x = 0.26, and we show results for ¢ = 0.2
(left) and a = 0.1 (right). We see that the new measures
correctly identify the fact that this node can communicate well,
despite never enjoying a high degree. Because each network
is undirected, A* is symmetric, and the Katz centralities (1)
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FIG. 6. (Color online) Results for Enron email data. Upper left: Total number of edges per day. Upper right: Scatter plot of broadcast
and receive centralities; corr = 0.00, T = 0.05, top 20 overlap size 2. Lower left: Scatter plot of broadcast centrality and total out degree;
corr = 0.62, T = 0.46, top 20 overlap size 11. Lower right: Scatter plot of receive centrality and total in degree; corr = 0.28, t = 0.31, top 20

overlap size 6.

and (2) are equivalent. Here a;, = 0.016, and in the lower
pictures we give a histogram for the Katz centrality in the case
a = 0.01 (left) and @ = 0.005 (right). The centrality for node
1001 is marked with a vertical dashed line, and we see that its
advantageous connectivity at each time point has been lost in
the aggregation process.

B. Telecommunication data

We now consider telecommunication data from Ref. [32].
We have daily “who phoned who” information between 106
individuals based at MIT over 365 days, with starting date
20 July 2004. Because phone conversations are bidirectional,
we have symmetrized the data, so Agf] =1 if individuals i
and j had at least one interaction on day k. Figure 3 shows
a summary of the adjacency matrices aggregated into 28-day
intervals (day 365 omitted). We notice a decrease in activity
outside the traditional academic teaching periods.

The upper left picture in Fig. 4 shows the daily edge count.
For these data amax = 0.12, and the figure shows centrality
results for @ = 0.1. In the upper right picture we scatter plot
on a log-log scale the broadcast and receive centralities (5).
Here, and in all other scatter plots, the correlation coefficient
“corr” and the Kendall 7 index “t” for a pair of raw
(not log transformed) centralities are quoted to two decimal
places in the figure caption. We see that even though the
individual adjacency matrices are symmetric, there is no strong
correlation between the two centralities. The lower pictures
scatter plot the broadcast and receive centralities for each node
against the total degree; that is, the sum of the node’s degrees
over all days. This makes it clear that the new centralities
are not simply repeating the degree information. The figure
captions also quantify the overlap between the sets of nodes
ranked among the top 20. In Fig. 4, the top 20 nodes ordered
from twentieth place to first place in terms of the three
measures are

Broadcast : 27,32,38,44,47,7,45,6,2,4,10,3,30,49,26,1,46,8,5,102,
Receive : 94,58,76,95,15,20,12,89,93,30,19,49,6,35,39,52,42,8,13,53,
Totaldegree : 21,9,93,100,32,10,57,22,49,25,53,23,6,40,20,3,2,4,8,5.
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FIG. 7. (Color online) Results for Enron email data. Upper left: Scatter plot of broadcast centralities for a = 0.2 and a = 0.1; corr = 1.00,
T = 0.93, top 20 overlap size 18. Upper right: Scatter plot of receive centralities for a = 0.2 and a = 0.1; corr = 0.97, © = 0.88, top 20
overlap size 14. Lower left: Scatter plot of broadcast centralities for directed and undirected networks for a = 0.1; corr = 0.82, v = 0.58, top
20 overlap size 12. Lower right: Scatter plot of receive centralities for directed and undirected networks for a = 0.1; corr = 0.76, T = 0.81,

top 20 overlap size 13.

In this case the overlaps between broadcast and receive,
broadcast and total degree, and receive and total degree
contain four, nine, and six nodes, respectively. Only one node
appears in all three top 20 lists.

Figure 5 examines the sensitivity of the results to the
parameter a. The upper pictures show how the centralities
change from a = 0.1 to 0.05. The top 20 broadcast lists have
14 nodes in common, and for the receiver lists the overlap
is 16. The lower pictures show the change from a = 0.05
to 0.01, and in this case the top 20 overlap counts are 16
and 11. Overall, the experiments indicate that the two new
measures deliver distinct information that is different from a
raw degree count and remains consistent over a range of a
values.

We also found that neither of the dynamic centralities were
strongly correlated with the Katz centrality for the binary
aggregated matrix A*. In this case a},,, = 0.02, and comparing
the the a = 0.1 broadcast centralities with the a = 0.015
Katz centralities gave corr = 0.34 and 7 = 0.25. Similarly,
for receive versus Katz we had corr = 0.22 and v = 0.24.

C. Email data

We now consider a public domain data set concerning
email activities of Enron employees. In Ref. [33] the static,
aggregate network was analyzed, but here we treat it as an

evolving network. We constructed daily information represent-
ing emails between 151 Enron employees, including to, cc, or
bee. So Al[fJ = 1 if employee i sent at least one message to
employee j on day k, but because this type of communication
is unidirectional, we do not automatically add the j — i link.
We have data over 1138 days, starting on 11 May 1999. Many
of the adjacency matrices are empty, stressing the importance
of the identity matrices in (4) for analyzing sparse data. The
upper left plot in Fig. 6 shows the daily edge count.

Using a = 0.2, in the upper right of Fig. 6 we scatter plot
broadcast versus receive centralities, and in the lower plots
we show broadcast versus total out degree and receive versus
total in degree. In this case amax = 0.24. As in the previous
test, we see that the two new centrality measures are distinct;
in particular, only two nodes appear in the overlap of top 20
broadcast and receive, and it is clear that some top receivers are
very poor broadcasters. The top 20 overlap between broadcast
and total out degree is 11 and between receive and total in
degree is 6, showing that the new measures do not simply
reflect aggregate connectivity.

For the binarized aggregate network we have ap,x = 0.05,
and comparing the a = 0.2 broadcast centralities with the
a = 0.04 Katz centralities gave corr = 0.10 and 7 = 0.37.
Similarly, for receive versus Katz we had corr = 0.02 and
T =0.21.
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The upper plots of Fig. 7 show how the new centralities
change when a is reduced from 0.2 to 0.1, indicating robustness
in this parameter regime. The lower plots show the effect
of symmetrizing the data, so that j — i whenever i — j,
in the case a = 0.1. We then have apn.,x = 0.12. We see
that the new dynamic centralities are relatively insensitive to
this transformation of the data, suggesting that the dominant
asymmetry is caused by time.

V. DISCUSSION

The new centrality measures introduced here can be
computed at any point in time, and hence they may be used to
monitor network behavior dynamically. A practical problem
with evolving networks is that of an observer who may be able
make some kind of intervention; for example, by injecting
some information (marketing content, rumors, propaganda,
misinformation) at key nodes at some instant, or by isolating or
even removing a node. This raises the issue of predicting future
network behavior. We will briefly discuss an approach based
on the observer’s expectation of the future communicability:
an estimate of Q going forward.

Suppose we have a stochastic model for the evolution
of the network based on historical data and some specific
knowledge. More precisely, suppose we have P(AP1|H,),
the conditional distribution for the adjacency matrix at the next
time step given its entire history up to and including step p,
so H, = {AP} AlP=1 AlP=21" "} Then applying this model
iteratively we obtain the conditional distribution for A1 for
any p’ > p; thatis, P(AP)|H,).

Let us write E(AP1|H,) to denote the corresponding
expected value of the future adjacency matrix, given H,.

Now suppose we have observed the network up to and
including some time step, say, p = 0 for convenience. Then
from (6) and (7) we can calculate estimates for the expectation
of the communicability over the current and future time steps.
We have the small a approximations

M
E(S(QIHy) =1 +ay_ E(A")|H) + 0(a’)
p=0
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and

M M
2EAS(Q)|Hy) =a” ) >~ E(AY, AP )| H) + 0(@a).

p=0p'=p+1

These estimates may be accessible in practice, depending
on the complexity and memory dependence of the model.
For example, suppose we make the dramatically simplifying
assumption that our model is a symmetric, edge-independent
Markov process. Letting «;; and w;; denote the stepwise birth
and death rates for the evolution of the (i, j)-th edge, we have
APl — A€ a5 p — oo, where Al = a;;/(eij + w;j). In
this Markovian case we can also replace the history, H,, by
the single previous step Al?!. Then considering time steps 0
up to M we have

E(QIA)Y = I + a(Ry o (A1 — Al
+(M + DAY 1+ 0(@a?),

where Ry is the symmetric matrix given by (R));; = (1 —
(1 —aj + @)™ /(aij + w;;), and o denotes component-
wise multiplication. This quantifies the relative contributions
to @ made by the initial condition and the long-term expected
equilibrium value for each edge. So if the observer wishes to
intervene based on the dominance of some large row or column
sums of Q, we can see that this may require such action sooner
or later depending on the current state of the network and the
longer-term expectation.

So, overall, we believe that the new class of walk-based
centrality measures introduced here offers great potential as a
computationally and analytically attractive means to treat time-
stamped network sequences, for both summarizing existing
data sets and real-time actioning.
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