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Abstract

We propose two new spectral measures for graphs and networks which characterize the ratios between the width of
the ‘‘bulk’’ part of the spectrum and the spectral gap, as well as the ratio between spectral spread and the width of the
‘‘bulk’’ part of the spectrum. Using these definitions we introduce the concept of golden spectral graphs (GSG), which
are graphs for which both spectral ratios are identical to the golden ratio, u ¼ 1þ

ffiffiffi
5
p� �

=2. Then, we prove several ana-
lytic results to finding the smallest GSG as well as to build families of GSGs. We also prove some non-existence results
for certain classes of graphs. We explore by computer several classes of graphs and found some almost GSGs. Two net-
works representing real-world systems were also found to have spectral ratios very close to u. We have shown in this
work that GSGs display good expansion properties, many of them are Ramanujan graphs and also are expected to have
very good synchronizability. In closing, golden spectral graphs are optimal networks from a topological and dynamical
point of view.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Graphs (networks) play an increasing role in our current understanding of the physical universe at different size
scales. These mathematical objects are formed by a collection of nodes and links connecting them [1]. Nodes represents
physical objects at different size scales and the links joining them represent the physical relationships (interactions) exist-
ing between these objects. At the Planck-scale there are physical theories, like the loop quantum gravity [2], that predicts
that space has a granular structure. Then, graphs in the form of spin-networks represent the spacetime in a mathemat-
ically precise and physically compelling way. In such graphs nodes represent elementary grains of space which can be
adjacent if they are separated by an elementary surface, which are represented by the links of the graph [2,3]. At a larger
size scale, in nuclear and particle physics, graphs are used to represent particle interactions in the form of the Feynman

diagrams [4]. Here, the links represent particle world lines and nodes represent virtual interactions. There are two kinds
of links called internal lines and external lines. The last are incident with only one node, and apart from them, a Feyn-
man graph is analogous to a graph [4]. Thus, the vacuum-polarization graphs, which have no external lines are nothing
but graphs. Increasing the size-scale we found the so-called quantum graphs [5,6], which are graphs in which lengths
have been assigned to links and the graphs are equipped with self-adjoint differential or pseudo-differential operators.
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They include models for studying free electrons in organic molecules, studies of superconductivity in granular and arti-
ficial materials, waveguide networks, Anderson localization, mesoscopic quantum systems, and quantum chaos, among
others [5,6].

Graph representation of chemical compounds have a large tradition in Chemistry and covers from small organic
molecules to biomacromolecules and carbon nanotubes [7,8]. In these cases atoms are represented by the nodes of
the graphs and (covalent) bonds are represented by links. More recently, the study of the so-called complex net-
works has received great attention in the scientific literature [9–13]. Complex networks are good examples of sys-
tems which pervades different scientific disciplines ranging from natural to technological and social sciences. The
elements forming the system can be as diverse as routers in Internet, proteins in protein interaction networks or
individuals in social networks [9–13]. Last but not least, a graph-theoretical picture of the universe at astronomical
scale has been proposed to study galaxy distributions [14,15]. In this model galaxies are represented by the nodes of
the constellation graphs and two nodes are linked if the corresponding galaxies are nearest neighbors. Thus, we find
graph representing physical systems at scales ranged from � 10�35m to � 1022 m and covering areas of study as
diverse as quantum gravity, quantum electrodynamics, nano- and mesoscopic physic, econophysics and
astrophysics.

Considering the widespread appearance of graphs in physical theories it is appealing to study new mathematical
properties of these objects. These new findings can illuminate our understanding of the topological organization of
our universe at different size scales. With this objective in mind we start here the investigation of a graph property which
has not been previously recognized neither in mathematics nor in physics literature. It is based on graph spectral theory
and deals with graphs having golden spectral ratio. The golden ratio, u ¼ 1þ

ffiffiffi
5
p� �

=2, which is also referred as the
golden mean or divine proportion, pervades many different fields of science and arts [16–18]. The golden ratio plays a
profound relation with nonlinear dynamics, chaos, fractals, knot theory, Cantorian spacetime, non-commutative geom-
etry, quasi crystallography and geometry of four manifolds [19–22]. Recently, a golden rectangle has been used to derive
the dilation of time intervals and the Lorentz contraction of lengths in special relativity [23]. A direct connection
between Hilbert space and E-infinity theory has also been established via an irrational-transfinite golden ratio topolog-
ical probability [24].

Here, we prove the existence of graphs with golden spectral ratio. We elaborate some construction methods for this
type of graphs and analyze some of their topological and dynamical properties, such as their expansibility and synchro-
nizability. We also found some almost golden spectral graphs in nature, in particular in an ecological network represent-
ing trophic relations among species and in a literature citation network. The work is presented in a self-contained
manner by introducing first the mathematical concepts used, then presenting the analytical results by means of Theo-
rems and Propositions, and finally carrying out a computer search for golden spectral graphs in artificial and real-world
networks.
2. Preliminary definitions

Let G be a graph without loops or multiple links having n nodes. Then the adjacency matrix of G, A(G) = A, is a
square, symmetric matrix of order n, whose elements Aij are ones or zeroes if the corresponding nodes are adjacent
or not, respectively. The sum of a row or column of this matrix is known as the degree of the corresponding node
and designated here by d [1]. This matrix has n (not necessarily distinct) real-valued eigenvalues, which are denoted here
by k1; k2; . . . ; kn [25]. The set of eigenvalues of A together with their multiplicities form the spectrum of G, which will be
represented here as SpecðGÞ ¼ ½k1�m1 ; ½k2�m2 ; . . . ; ½kn�mnf g, where ki is the ith eigenvalue with mi multiplicity. Here, the
eigenvalues are usually assumed to be labelled in a non-increasing manner:
k1 P k2 P � � �P kn: ð1Þ
Let Pn, Cn, Kn, Ka,b a + b = n, Kn=c;n=c;...;n=c and CPn be the path graph, the complete graph, the complete bipartite
graph, the complete multipartite graph with n nodes and c colours, and the cocktail-party graph, respectively [1]. The
path Pn is a tree with two nodes of degree 1, and the other n � 2 nodes of degree 2. A tree is a graph without cycles.
A cycle Cn graph is a graph on n nodes containing a single cycle through all nodes. Kn is the graph in which every pair
of nodes are connected. A bipartite graph is the one in which the set of nodes is decomposed into two disjoint sets such
that no two nodes within the same set are adjacent. A complete bipartite graph Ka,b is a bipartite graph such that every
pair of nodes in the two sets are adjacent. If the nodes are partitioned into k disjoint sets the graph is known as k-partite.
Thus, Kn=c;n=c;...;n=c is the complete multipartite graph in which each partition contains n/c nodes. The cocktail party graph
CPn, also called the hyperoctahedral graph, is the graph consisting of two rows of paired nodes in which all nodes but the
paired ones are connected with a link.
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Let G and G 0 be finite graphs with adjacency matrices A and A 0, respectively. Then we define the Kronecker (tensor)
product of graph, G � G 0, as the graph whose adjacency matrix is A � A 0, where � is the Kronecker product of matrices
defined by
A� A0 ¼

a11A0 a12A0 a13A0 � � �
a21A0 a22A0 � � �
a31A0 � � �

..

.

0
BBBB@

1
CCCCA:
The following matrices will be used for the tensor products, Jk, Ik and Ok, which represent the all-one, identity and
all-zeroes matrices, respectively. Here, we will use the notation used by van Dam [26–28] in which G~Jk represents the
graph with adjacency matrix ðAþ IkÞ � Jk � Ik .

The line graph L(G) of a graph G is obtained by associating a node with each link of G and connecting two nodes
with a link in L(G) if and only if the corresponding links of G have a common node.
3. Spectral ratios

We start by defining two new measures for graphs based on the spectra of adjacency matrices. Let k1 � kn be the
spread of the spectrum of G and k1 � k2 its spectral gap. Then, we define the width of the ‘‘bulk’’ part of the spectrum
as k2 � kn. Using these measures we define the spectral ratios of the graph G as the proportion between width of the
‘‘bulk’’ part of the spectrum and the spectral gap, as well as the ratio between spectral spread and the width of the
‘‘bulk’’ part of the spectrum:
w1ðGÞ ¼
k2 � kn

k1 � k2

ðk1 � k2Þ 6¼ 0; ð2Þ

w2ðGÞ ¼
k1 � kn

k2 � kn
ðk2 � knÞ 6¼ 0: ð3Þ
Let us consider the particular case in which w1(G) = w2(G). That is,
k2 � kn

k1 � k2

¼ k1 � kn

k2 � kn
¼ u: ð4Þ
Then, we have that k2 � kn = u (k1 � k2), which can be substituted on the left part of (4) giving
ðk1 � k2Þ þ uðk1 � k2Þ
uðk1 � k2Þ

¼ uðk1 � k2Þ
k1 � k2

; ð5Þ
which is reduced to u2 � u� 1 ¼ 0 where u ¼ 1þ
ffiffi
5
p

2
is the golden ratio, golden mean or divine proportion.

Let G be a graph with spectral ratios defined by (4). Then, we call this graph a graph with golden spectral ratio or
golden spectral graph (GSG) for short. GSGs will have several interesting mathematical properties related to their spec-
tral ratios. For instance, their spectral ratios [16–18]:

(i) can be expressed as a self-similar continued fraction
k2 � kn

k1 � k2

¼ k1 � kn

k2 � kn
¼ 1þ 1

1þ 1
1þ 1

1þ���

ð6Þ
(ii) can be obtained as the sum of all its reciprocal powers,
k2 � kn

k1 � k2

¼ k1 � k2

k2 � kn
þ k1 � k2

k2 � kn

� �2

þ k1 � k2

k2 � kn

� �3

þ � � � ð7Þ
(iii) are the most irrational number, which is exactly the value at which the sequence of ratios of consecutive Fibo-
nacci numbers converges
k2 � kn

k1 � k2

¼ k1 � kn

k2 � kn
¼ lim

n!1

F n

F n�1

: ð8Þ
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4. The smallest graph with golden spectral ratio

In this section we are interested in finding the smallest connected graph with golden spectral ratio. We first prove the
following result for cycle graphs.

Theorem 1. Let Cn be the cycle graph of n nodes. Then, Cn is a GSG if, and only if, n = 5.

Proof. The spectra of Cn is given by [25]:
SpecCn ¼ ð½2�1; ½2 cos 2p=n�2; . . . ; ½2 cosðn� 1Þp=n�2Þ ðn oddÞ ð9Þ
SpecCn ¼ ð½2�1; ½2 cos 2p=n�2; . . . ; ½2 cosðn� 2Þp=n�2; ½�2�1Þ ðn evenÞ ð10Þ
Let us represent Cn as a regular n-gon with edge length an ¼ 2Rn sinðp=nÞ, where Rn is the circumradius. Then,
k2 ¼ 2� ðan=RnÞ2; ð11Þ

kn ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

n � a2
n

q
Rn

ðn oddÞ: ð12Þ
From where we can obtain the expressions for the spectral ratios
w1ðCnÞ ¼
2R2

n � a2
n þ Rn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

n � a2
n

q
a2

n

ðn oddÞ; ð13Þ

w1ðCnÞ ¼
2R2

n � a2
n

a2
n

ðn evenÞ: ð14Þ
Then, for an = 1, and using the relation between the circumradius and an we obtain for a cyclic graph with golden
spectral ratio:
n ¼ p

sin�1
ffiffiffiffiffiffiffiffiffiffi
4u2�1
p

2u2

� � ðn oddÞ; ð15Þ

n ¼ p

sin�1ð1=uÞ
ðn evenÞ: ð16Þ
Then, we obtain n = 5 and n = 4.72 (not an integer number) from expressions (15) and (16), respectively, which
proves that C5 is the only cyclic graph with golden spectral ratio. h

This can be observed graphically by plotting both spectral ratio measures versus the number of nodes in the cycle
graphs. In Fig. 1a we can see that both spectral ratio measures intersect to each other at exactly the value of n = 5,
which corresponds to the golden ratio.

The following result shows that the pentagon is the simplest connected graph displaying a golden spectral ratio.

Proposition 1. C5 is the smallest connected graph with golden spectral ratio.

Proof. We simply calculate w1(G) for all connected graphs with n vertices, 2 6 n 6 5, for which no one graph is a
GSG. h
5. Non-existence results

It is interesting to investigate where not to search for graphs with GSR. Here, we find two results which exclude large
families of graphs in the search for GSGs. The first result includes five different families of graphs, which are commonly
found in several applications of graphs in physical contexts.

Theorem 2. For each n there is no GSGs among Pn, Kn, Ka,b a + b = n, Kn=c;n=c;...;n=c, CPn.
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Fig. 1. Plot of spectral ratios, w1(G), continuous line and w2(G) discontinuous line, versus the number of nodes in linear-logarithmic
scale for (a) cycle graphs, Cn and (b) path graphs, Pn. The dot line represents the value of u ¼ ð1þ

ffiffiffi
5
p
Þ=2.
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Proof. It is not difficult to see that w1 (Kn) = 0, w2 (Kn) is undefined, w1 (Ka,b) = 1 and w2 (Ka,b) = 2. The spectrum of
Kn=c;n=c;...;n=c is SpectðKn=c;n=c;...;n=cÞ ¼ f½n� n=c�1; ½0�n�c

; ½�n=c�c�1g [29]. Thus, w1ðKn=c;n=c;...;n=cÞ ¼ 1=ðc� 1Þ and
w2ðKn=c;n=c;...;n=cÞ ¼ c. For the cocktail-party graph we have SpectðCP nÞ ¼ f½2n� 2�1; ½0�n; ½�2�n�1g [25,29] and we obtain
w1(CPn) = 2/(2n � 2) and w2(CPn) = n. Thus, it is enough to see that w1(G) is bounded between 0 and 1 for these two
types of graphs 0 6 wðKn=v;n=v;...;n=vÞ 6 1 and 0 6 w1ðCP nÞ 6 1. The path Pn has eigenvalues kj ¼ 2 cos jp

nþ1

� �
for

j ¼ 1; 2; . . . ; n [29]. Then it is easy to see that w1(Pn) and w2(Pn) never intersect to each other (see Fig. 1b). Note that
w2(P2) is undefined and that there is no sense in calculating the spectral ratios for P1 as it has only one eigenvalue. h

The second non-existence results is related to the graphs of symmetric balanced incomplete block designs [30,31].
Combinatorial designs have been largely applied in the statistical design of experiments and in the theory of error-
correcting codes [30,31]. More recently they have found a large number of applications in computer science and the
theory of cryptography and networking [32]. Let G be a symmetric balanced incomplete block design consisting of v

elements and B blocks, such that each element is contained in d blocks, each block contains d elements and each pair
of elements is simultaneously contained in k* blocks. In this case we have the following non-existence result.

Theorem 3. For each v,d,k* there is no incidence graph of symmetric 2 � (v, d, k*) designs which is GSGs.

Proof. The spectrum of the incidence graph of symmetric 2 � (v, d, k*) designs is [29]
½d�1;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d � k�
ph iv�1

; �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d � k�
ph iv�1

; ½�d�1
	 


: ð17Þ
Thus, the spectral ratio for these graph is
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w1ðGÞ ¼
d þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d � k�
p

d �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d � k�
p : ð18Þ
For the case of w1(G) = u we obtain the following relation between the number of blocks and the number of
elements per block:
k� ¼ �d d
ðu� 1Þ2

u4
� 1

" #
: ð19Þ
Due to their definitions both the number of blocks and the number of elements per block should be integer positive
numbers. It is easy to see that k* < 0 for d P 18. On the other hand, there is no integer value of k� for 0 < d < 18, which
proves the previous result. h

Remark. There is one block design for which the spectral ratio is approximated to the golden ratio. It corresponds to
the design with d = 6, k* = 4 (w1(G)� 1.617).
6. Construction methods

In this section we propose three methods for building graphs which have golden spectral ratios. The first two cases
generate infinite families of GSGs and the last case generate GSGs at the infinite size limit. The first of these families is
built by using the following result.

Theorem 4. The graphs C5 � Jk are GSGs.

Proof. If G has n nodes and spectrum f½r�1; ½p�f ; ½0�m; ½s�gg, where m could be zero, then G � Jk has nk nodes and spec-
trum f½rk�1; ½pk�f ; ½0�mþnr�n

; ½sk�gg. Thus, C5 � Jk has spectrum [26–28]
SpecðGÞ ¼ ½2k�1; � k
2
þ k

2

ffiffiffi
5
p� �2

; ½0�5ðk�1Þ; � k
2
� k

2

ffiffiffi
5
p� �2

( )
ð20Þ
from which we obtain w1ðGÞ ¼ 2
ffiffi
5
p

5�
ffiffi
5
p ¼ u. h

Now let us consider the k-covers of C3~J k and C5~J k . Let C be the k · k circulant matrix whose elements are Cij = 1
if j ¼ iþ 1ðmodkÞ, and Cij = 0 otherwise. Then let P be the k2 · k2 matrix defined as follows [26]:
P ¼

I I � � � I

C C � � � C

..

. ..
. ..

.

Ck�1 Ck�1 � � � Ck�1:

0
BBBB@

1
CCCCA:
In addition, let us define D=(Jk � Ik) � Ik. Then, the k-covers of C3~Jk and C5~Jk will have the following adjacency
matrices [26]:
A3 ¼
D P PT

PT D P

P PT D

0
B@

1
CA; and A5 ¼

D P 0 0 PT

PT D P 0 0

0 PT D P 0

0 0 PT D P

P 0 0 PT D

0
BBBBBB@

1
CCCCCCA
:

Theorem 5. The k-covers of C3 ~ Jk and C5 ~ Jk are GSG.

Proof. The spectra of the k-covers of C3~Jk and C5~Jk are, respectively [26–28],
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SpectðGÞ ¼ ½3k � 1�1; ½�1�3k2�6kþ5
; �1þ k

1	
ffiffiffi
5
p

2

" #3k�3
8<
:

9=
;; ð21Þ

SpectðGÞ ¼ ½3k � 1�1; ½�1�5k2�10kþ5
; �1þ k

1	
ffiffiffi
5
p

2

" #5k�3
8<
:

9=
;: ð22Þ
From which,
w1ðGÞ ¼
2
ffiffiffi
5
p

5�
ffiffiffi
5
p ¼ u: �
Corollary. The icosahedral graph is a GSG.

The icosahedral graph is the 2-cover of C3~J 2, from which we deduce that it is GSG according to Theorem 5. We
have checked by computer that the icosahedron is the only GSG among the platonic graphs, i.e., tetrahedral, cubical,
octahedral, icosahedral and dodecahedral graphs.

The final result in this section is concerned to the line graph of complete bipartite graphs.

Theorem 6. The line graph of the complete bipartite graph, L(Ka,b) for which a = Fk+1, b = Fk, where Fk is the kth Fibo-

nacci number is a GSG for k!1.

Proof. The spectrum of L(Ka,b) for a > b P �2 is [29]:
Spect½LðKa;bÞ� ¼ f½aþ b� 2�1; ½a� b�b�1; ½b� 2�a�1; ½�2�ab�a�bþ1g: ð23Þ
Then,
w1½LðKa;bÞ� ¼
a
b
¼ F kþ1

F k
and w2½LðKa;bÞ� ¼

aþ b
a
¼ F k þ F kþ1

F kþ1

: ð24Þ
It is known [33] that limk!1
F kþ1

F k
¼ u and limk!1

F kþF kþ1

F kþ1
¼ u which proves the result. h

Remark. The Theorem 6 is also true for a = Lk+1 and b = Lk where Lk is the kth Lucas number [33].
The graphs generated by the three construction methods developed here are d-regular graphs. The graphs generated

by Theorem 4 have n = 5k nodes and degree equal to 2k, i.e., they are 2k-regular graphs. The graphs generated by
Theorem 5 have n = 3k2 and n = 5k2 nodes, respectively, and are (3k � 1)-regular graphs. In the last case (Theorem 6)
the graphs generated will have n = ab nodes and they will be (a+b � 2)-regular graphs.
7. Expansibility of GSGs

Expansibility is an interesting property that deserves to be investigated for GSGs. Good expansion networks
(GENs) show excellent communication properties due to the absence of bottlenecks [34]. A bottleneck is a small set
of nodes/links whose elimination leads to fragmentation of the network into at least two large connected components.
Formally, a graph is considered to have GE if every subset S of nodes (S 6 50% of the total number of nodes) has a
neighborhood that is larger than some ‘‘expansion factor’’ / multiplied by the number of nodes in S. A neighborhood
of S is the set of nodes which are linked to the nodes in S. Formally, for each vertex v 2 V (where V is the set of nodes in
the network), the neighborhood of v, denoted as C(v) is defined as CðvÞ ¼ fu 2 V jðu; vÞ 2 E:g (where E is the set of links
in the network). Then, the neighborhood of a subset S 
 V is defined as the union of the neighborhoods of the nodes in
S: CðSÞ ¼

S
v2SCðvÞ and the network has GE if CðvÞP /jSj8S 
 V .

Let D = k1 � k2 be the spectral gap of a graph. Then it is known that for a d-regular graph the expansion parameter
is related to the spectral gap by [34]
D
2
6 / 6

ffiffiffiffiffiffiffiffiffi
2dD
p

: ð25Þ
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Thus, the larger the spectral gap the larger the expansion of the graph. Among the graphs with large spectral gap
there is a family of graph named Ramanujan graphs [35,36]. These graphs have spectral gaps almost as large as possible.
Formally, a Ramanujan graph is a d-regular graph for which [35,36]
kðGÞ 6 2
ffiffiffiffiffiffiffiffiffiffiffi
d � 1
p

; ð26Þ
where k(G) is the maximum of the non-trivial eigenvalues of the graph
kðGÞ ¼ max
jki j<d
jkij: ð27Þ
The graphs C5 � Jk and the k-covers of C3 ~ Jk and C5 ~ Jk have spectral gaps given by the following expressions,
respectively,
D1 ¼
1

u2 þ 1

� �
n; D2 ¼

u2 þ 1ffiffiffi
3
p

� � ffiffiffi
n
p

; and D3 ¼
u2 þ 1ffiffiffi

5
p

� � ffiffiffi
n
p

ð28Þ
Consequently, we have the following results for these GSGs.

Proposition 2. The graphs C5 � Jk are Ramanujan for k 6 20.

Proof. The largest non-trivial eigenvalue for C5 � Jk is k2 ¼ k
u. Thus we have that these graphs are Ramanujan if, and

only if, k2

u2 � 8k þ 2 6 0, which is true for k 6 20 (n 6 100). h

Proposition 3. The k-covers of C3 ~ Jk and C5 ~ Jk are Ramanujan for k 6 9.

Proof. The largest non-trivial eigenvalue for C3 ~ Jk and C5 ~ Jk is k2 = uk � 1. Then, these graphs are Ramanujan if,
and only if, u2k2 � 2kð6þ uÞ þ 5 6 0, which is true for k 6 9, n 6 265 for C3 ~ Jk and n 6 405 for C3 ~ Jk. h

These results indicate that we have a total of 20 Ramanujan graphs among the graphs C5 � Jk. These graphs are
relatively small having between 5 and 100 nodes. On the other hand, there are 18 Ramanujan graphs among C3 ~ Jk

and C5 ~ Jk which have up to 405 nodes. In Fig. 2 we illustrate some of the Ramanujan graphs constructed by using
Propositions 2 and 3.

In general we can show the following general result for a d-regular graph. h

Proposition 4. A k-regular graph is GSG if and only if
k2 >
d
u3
: ð29Þ
Proof. Let d ¼ k1 > k2 P � � �P kn P �d be the eigenvalues of the d-regular graph and let kn = �d + e for 0 6 e < 2d.
Then, the graph is GSG if and only if
k2 ¼
dðu� 1Þ þ e

uþ 1
: ð30Þ
Thus, k2 >
dðu�1Þ
uþ1
¼ d

u3. h

This proposition have three important consequences which are directly related to the good expansion properties of
GSGs because of the connection between Ramanujan graphs and expanders [34–36]. They are as follows:

(i) no d-regular GSG is Ramanujan for d > 70,
(ii) every bipartite d-regular GSG is Ramanujan for d 6 70,

(iii) no graph generated by Theorem 6 is Ramanujan.

These consequences are easily derived from the definition of Ramanujan graphs in combination with Proposition 4.
A d-regular GSG is Ramanujan if
d
u3
6 2

ffiffiffiffiffiffiffiffiffiffiffi
d � 1
p

or dðd � 4u6Þ þ 4u6
6 0 ð31Þ
which is satisfied for d 6 70. Because e = 0 is the lower bound for this constant, which corresponds to the bipartite d-
regular graph it is easy to see that every bipartite d-regular GSG is Ramanujan for d 6 70. The graphs generated by
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Theorem 6 have degree much larger than 70 due to the fact that they are built for the infinite limit. Thus it is obvious
that they are not Ramanujan. This can be seen graphically in Fig. 3 where the area demarked between the curves
k2 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
d � 1
p

and k2 ¼ d
u3 corresponds to the region where Ramanujan d-regular GSGs can be found. All Ramanujan

regular GSGs previously found in this work are located in this region. All these graphs display excellent communication
properties and well as large robustness due to the lack of structural bottlenecks, which make them good candidates for
infrastructure and communication networks [34].

8. Synchronizability of GSGs

Now we are going to analyze the synchronizability of individual dynamical processes occurring at the vertices of a
graph. We will consider the criterion established by Barahona and Pecora based on spectral techniques to determine the
stability of synchronized states on networks [37]. These results have been used by Donetti et al. [38,39] for finding entan-
gled networks, which are displayed to have super-homogeneity and optimal topologies. In this approach a dynamical
process _xi ¼ F ðxiÞ � r

P
kLijHðxjÞ is considered. In this case the dynamical variables are xi¼1;2...;n. F and H are the evo-

lution and the coupling functions, respectively, r is a constant and Lij are the entries of the discrete Laplacian matrix
L(G), which is defined as follows [25]:
L ¼ LðGÞ ¼ D� A; ð32Þ
where D is the degree matrix whose diagonal entries are the degrees of the corresponding nodes and the rest of entries
are zeroes, and A is the adjacency matrix.
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According to the approach followed by Barahona and Pecora [37] it is concluded that a graph exhibits better syn-

chronizability if the ratio Q ¼ l1

ln�1
is as small as possible, where lj is an eigenvalue of the Laplacian matrix, which have

been ordered in a non-increasing manner: l1 > l2 P � � �P ln�1 P ln ¼ 0.
It is easy to see that for regular graphs the following relationship exists between the eigenvalues of the Laplacian and

the eigenvalues of the adjacency matrix of a graph (ordered as in (1)):
lj ¼ k1 � kn�jþ1: ð33Þ
Thus, it is straightforward to realize that the ratio Q can be expressed in terms of the adjacency eigenvalues of a
d-regular graph as follows:
Q ¼ k1 � kn

k1 � k2

¼ d � kn

d � k2

: ð34Þ
Then, for a d-regular graph Q is simply the product of both spectral ratios defined in this work: Q = w1(G)w2(G), which
immediately implies that for a d-regular GSG: Q = u2 = u +1.

Using an optimization process based on minimizing the ratio Q, Donetti et al. have found the so-called ‘‘entangled’’
networks, which are graphs having low values of Q and thus displaying good synchronizability and good expansion
properties [38,39]. Among the graphs found by this process there are some well-known graphs, such as the 3-cages with
10, 14 and 24 nodes, which are known as Petersen, Heawood and McGee graphs. Other entangled graphs which are not
d-cages were also reported by these authors and they are shown in Fig. 4 together with the 3-cages.

The Q ratios for these optimal graphs found by Donetti et al. [38,39] are 2.500, 2.784, 5.562, 3.613 and 4.796 for the
Petersen, Heawood, McGee graphs and optimal entangled networks with d = 3 with 12 and 16 nodes, respectively. As
can be seen only the Petersen graph has Q < u, Q < QGSG. We can call these graphs having synchronizability better than
a GSG a platinum graph. We speculate that the number of platinum graphs is very small and consequently GSGs are
among the graphs with lowest Q ratios and better synchronizability that exist.

9. Computer results

Now we are going to explore some series of graphs for which we have not obtained analytic results in order to search
for GSGs. These sets of graphs includes all trees with n nodes, 2 6 n 6 10, all connected cubic graphs with n nodes for
n ¼ 4; 6; 8; 10; 12 and a set of miscellaneous graphs [40].

The computer analysis of 200 trees does not provide any GSG. There is one graph which displays values of the spec-
tral ratios which are close to the golden ratio (see Fig. 5). This graph corresponds to a class of graphs known as comets
[41]. A comet, Cm(q, r), having n ¼ qþ r þ 1 nodes is a graph formed by a star K1,q and a path Pr directly bonded to
one of the nodes of the star which is different from the central one.

The graph we found to have spectral ratio close to the golden section corresponds to the comet Cm(8, 1), which
has w1(G) = 1.963 and w2(G) = 1.510. Then, we explore all comets Cm(q, 1), 3 6 q 6 20 (5 6 n 6 22). The results are
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illustrated in Fig. 6 where it can be seen that both spectral ratios are very close to each other for the comet Cm(17,1)
which has w1(G) = 1.6125 and w2(G) = 1.6202. Thus, this comet can be considered as an almost GSG.

The second family of graphs which is analysed here is that of cubic graphs. In Fig. 5 we illustrate the trends of both
spectral ratios as a function of the spectral gap. As can be seen they follows similar trends than the ones observed from
trees. Here, there are three graphs which have spectral ratios close to the golden section. The one which is closest to a
GSG is a circulant graph with eight vertices. A circulant graph with n nodes [25], Cin(j), is a graph in which the ith node
is adjacent to the (i + j)th and (i � j)th nodes for each j in a list l. The graph we have identified to be almost GSG is
Ci8(4), which has w1(G) = 1.705 and w2(G) = 1.5865. Then we have explored all circulant graph of the type Cin(n/2) for
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n 6 12 and n even. We have seen that both spectral ratios diverge as the number of nodes increases and the graph which
is closest to a GSG is Ci8(4). Another graph in this family was also found among the ones having spectral ratios close to
the golden section. It is Ci6(3) having w1(G) = 1.500 and w2(G) = 1.667. With identical spectral ratios we also found
another cubic graph, which corresponds to the Petersen graph [42]. Consequently, we have explored the generalized
Petersen graphs with n ¼ 6; 8; 10; 12; 14 nodes and we found that among them the ‘‘classical’’ Petersen graph has the
spectral ratios closest to the golden section.

Finally, we explored 27 miscellaneous graphs for which we plot both spectral ratios as a function of the spectral gap
in Fig. 5. Among these graphs we found 4 which are almost-GSGs and which are illustrated in Fig. 7. The spectral ratios
for these graphs are, according to Fig. 5: w1(a) = 1.5757, w2(a) = 1.6346, w1(b) = 1.5583, w2(b) = 1.6417,
w1(c) = 1.6916, w2(c) = 1.5912, w1(d) = 1.6986, w2(d) = 1.5887. These graphs are examples of not regular graphs which
are almost GSGs. We hope that further investigation of larger pools of graphs will identify a larger number of GSGs
and almost-GSGs.
10. Real-world complex networks

We study here 47 real-world complex networks accounting for ecological, biological, informational, technological
and social systems. The ecological networks studied correspond to the following food webs [43]: Benguela, Bridge
Fig. 7. Some miscellaneous graphs which are found to be almost golden spectral graphs (see text for the values of the spectral ratios).



Fig. 8. Two real-world networks with spectral ratios very close to the golden ratio.
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Brook, Canton Creek, Chesapeake Bay, Coachella Valley, El Verde rainforest, Grassland, Little Rock Lake, Reef
Small, Scotch Broom, Shelf, Skipwith Pond, St. Marks Seagrass, St. Martin Island, Stony, Ythan Estuary (1) with
and without parasites (2). The biological networks correspond to the protein–protein interaction networks (PINs),
for Saccharomyces cerevisiae (yeast) and for the bacterium Helicobacter pylori; three transcription interaction networks
concerning Escherichia coli, yeast and sea urchins and the neural network in Caenorhabditis elegans. The informational
networks include two semantic networks, one based on Roget’s Thesaurus of English (Roget) and the other on the
Online Dictionary of Library and Information Science (ODLIS) and four citation networks: one consisting of papers
published in the Proceedings of Graph Drawing in the period 1994–2000 (GD), papers published in the field of ‘‘Network
Centrality’’ (Centrality), papers published or citing articles from Scientometrics for the period 1978–2000 (SciMet) and
papers containing the phrase ‘‘Small World’’. The technological systems represented by networks correspond to three
electronic sequential logic circuits parsed from the ISCAS89 benchmark set, where nodes represent logic gates and flip-
flops, the airport transportation network in the US in 1997, the Internet at the autonomous systems (AS) level as from
April 1998 and five software networks: Abi, Digital, MySQL, VTK and XMMS. Finally, the social networks studied
here include a network of the corporate elite in US, a scientific collaboration network in the field of computational
geometry (Geom), inmates in prison, injectable drug users (IDUs), Zachary karate club, college students on a course
about leadership, and a collaboration between Jazz musicians.

We calculated the spectral ratios for these networks in search for GSG or almost-GSGs. The results are plotted in
Fig. 5 as a function of the spectral gap. As can be seen the same trend observed for the different classes of graphs pre-
viously analysed is also observed for these real-world complex networks. That is, the largest the spectral gap the lowest
the first spectral ratio, w1(G), while the values of w2(G) are mainly concentrated between 1 and 2.

There is not one real-world network with golden spectral ratio but two of them can be considered as almost-GSG.
They correspond to the food web of St. Marks National Refuge, in FL, USA and the other to the citation network for
papers published in the field of ‘‘Network Centrality’’ (see Fig. 8). The first network has 48 nodes and average degree
hki ¼ 9:08. It has spectral ratios of w1(G) = 1.630 and w2(G) = 1.613. The second almost-GSR network has 118 nodes,
hki ¼ 10:4, w1(G) = 1.655 and w2(G) = 1.604. These networks have been previously identified to have large spectral gaps
and displaying good expansion properties. The St. Marks food web also has an uniform degree distribution implying
large robustness due to the absence of structural bottlenecks and hubs connecting large number of nodes. The Central-
ity network display an exponential degree distribution and can be vulnerable by attacking the most connected nodes in
the network. Both networks are also expected to display very low Q ratio and consequently they should display good
synchronizability.
11. Conclusions

We have investigated here the existence of graph (networks) displaying golden spectral ratios. The spectral ratios
have been introduced here in a very intuitive way by measuring the proportions between the width of the ‘‘bulk’’ part
of the spectrum and the spectral gap, as well as the ratio between spectral and the width of the ‘‘bulk’’ part of the spec-
trum. We have proved that the pentagon is the smallest golden spectral graph (GSG). It is the only cycle graph with this
property and it should be mention that a regular pentagon also display a golden ratio between the length of its diagonal
and the length of its edges. Thus, it is both topologically and geometrically golden. We have proposed three construc-
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tion methods that permit to build families of GSGs. We have shown that some of the GSGs built using these results
display very interesting topological and dynamical properties. For instance, several of these graphs are Ramanujan,
which make them to display very good expansion properties. We have also investigated the synchronizability of GSGs
and we have found that these graphs are among the one showing the best possible synchronizability. In consequence,
GSGs are very good candidates to design robust networks for different technological, social and infrastructure systems.

As normally happens when a new property is discovered there are more open questions than answers. The investi-
gation of golden spectral graphs is in this stage and we consider that a great effort need to be done to understand all
mathematical and physical consequences of a graph displaying golden spectral properties. We hope, however, that the
current work contribute to motive this research in both mathematics and physics.
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