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a b s t r a c t 

Degree assortativity is the tendency for nodes of high degree (resp. low degree) in a graph 

to be connected to high degree nodes (resp. to low degree ones). It is usually quantified by 

the Pearson correlation coefficient of the degree–degree correlation. Here we extend this 

concept to account for the effect of second neighbours to a given node in a graph. That 

is, we consider the two-walks degree of a node as the sum of all the degrees of its adja- 

cent nodes. The two-walks degree assortativity of a graph is then the Pearson correlation 

coefficient of the two-walks degree–degree correlation. We found here analytical expres- 

sion for this two-walks degree assortativity index as a function of contributing subgraphs. 

We then study all the 261,0 0 0 connected graphs with 9 nodes and observe the existence 

of assortative–assortative and disassortative–disassortative graphs according to degree and 

two-walks degree, respectively. More surprisingly, we observe a class of graphs which are 

degree disassortative and two-walks degree assortative. We explain the existence of some 

of these graphs due to the presence of certain topological features, such as a node of low- 

degree connected to high-degree ones. More importantly, we study a series of 49 real- 

world networks, where we observe the existence of the disassortative–assortative class 

in several of them. In particular, all biological networks studied here were in this class. 

We also conclude that no graphs/networks are possible with assortative–disassortative 

structure. 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

1. Introduction 

Networks represent the topological skeleton of a wide range of systems in nature and society [1–4] . The characterization

of their structure is crucial since it shapes the evolutionary, functional, and dynamical processes that take place in those

systems [4–6] . 

It is well known that links generally do not connect nodes regardless of their characteristics. In social networks, for

instance, evidence suggests that individuals prefer to associate with others of similar age, religion, education or occupation

as themselves [7] . Assortativity or assortative mixing is a graph metric that refers to the tendency for nodes in networks

to be connected to other nodes that are similar (or different) to themselves in some way [8] . Typically, it is determined for

the degree (i.e. the number of direct neighbours, k ) of the nodes in the network [9–12] . The tendency for high-degree nodes

to associate preferentially with other high-degree nodes plays a major role in many important processes, such as epidemic
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spreading, synchronization or network robustness, among others [9,13–16] . However, assortativity may be applied to any

characteristics of a node, including non-topological vertex properties, such as language or race [8] . Most of the research

done in this area has been summarized in the review of Noldus et al. [17] . Other extensions to account for interactions

beyond the nearest-neighbours have also been proposed in the recent literature [18] . 

The aim of this work is to define an assortativity index that captures the influence of first and second neighbours of a

node. We then express this two-walks assortativity in terms of the subgraphs contributing to it. 

The paper is organized as follows. In Section 2 , the preliminaries are presented. In Section 3 , the concept of two-walks

degree assortativity is introduced and analysed. Main result is demonstrated in Section 4 . Numerical results are presented

in Section 5 . Conclusions are summarized in Section 6 . 

2. Preliminaries 

Here we consider simple, undirected graphs G = ( V, E ) , i.e., graphs without multiple edges, self-loops, directions or

weights in their edges. The notation used is standard and the reader can check for instance [19] . Let us define some of

the measures used in this work in order to make it self-contained. First, we define the degree assortativity index [8] . Math-

ematically, it is written as: 

r k = 

1 
m 

∑ 

( i, j ) ∈ E k i k j −
{

1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
k i + k j 

]}2 

1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
k 2 

i 
+ k 2 

j 

]
−

{
1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
k i + k j 

]}2 
(2.1)

where k i and k j are the degrees at both ends of link ( i , j ) ∈ E and m is the number of links. A positive assortativity index

r k > 0 indicates the tendency of higher degree nodes in the graph to be connected to other higher degree nodes. On the

other hand, r k < 0 indicates the tendency of higher degree nodes to be connected to lower degree nodes. It was previously

proved the following result [11] . 

Lemma 1. Let G = ( V, E ) be a simple graph and let k i be the degree of the vertex i. Let | P 1 |, | P 2 | and | P 3 | be the number of

edges, of paths of length two and of paths of length three, respectively. Finally, let | C 3 | be the number of triangles in G. Then, the

assortativity coefficient can be written combinatorially as: 

r k = 

| P 3 | + 3 | C 3 | − | P 2 | 2 | P 1 | 
| P 2 | + 3 | S 1 , 3 | − | P 2 | 2 | P 1 | 

(2.2)

Let | P r / s | be the ratio | P r |/| P s |, | S 1, 3 | the number of star graphs of four nodes, and C = 3 | C 3 | / | P 2 | . Then G is: 

(1) assortative (r > 0 ): if and only if | P 3 / 2 | + C > | P 2 / 1 | , 
(2) neutral ( r = 0 ): if and only if | P 3 / 2 | + C = | P 2 / 1 | , and 3 | S 1 , 3 | − | P 2 | (| P 2 / 1 | − 1) � = 0 , and 

(3) disassortative (r < 0 ): if and only if | P 3 / 2 | + C < | P 2 / 1 | 
It is worth mentioning that the denominator of Eq. (2.2) is non-negative. Consequently, the sign of r k depends only upon

the sign of the numerator, which is determined by the following structural factors: the global clustering coefficient (i.e.

 = 3 | C 3 | / | P 2 | ), the intermodular connectivity (i.e. | P 3 / 2 | = | P 3 | / | P 2 | ) and the branching (i.e. | P 2 / 1 | = | P 2 | / | P 1 | ) [11] . 

The number of subgraphs contributing to the degree assortativity can be obtained using the following results [20] . 

Lemma 2. Let G = ( V, E ) be a simple graph with n nodes. Let k i be the degree of the vertex i. Let | C 3 | be the number of triangles

in G. Then, the number of edges | P 1 |, path of length two | P 2 | and three | P 3 | are given, respectively by 

| P 1 | = 

1 

2 

n ∑ 

i =1 

k i , 

| P 2 | = 

1 

2 

n ∑ 

i =1 

k i ( k i − 1 ) , 

| P 3 | = 

∑ 

( i, j ) ∈ E 
( k i − 1 ) 

(
k j − 1 

)
− 3 | C 3 | . 

Lemma 3. Let G = ( V, E ) be a simple graph. Let k i be the degree of the vertex i in G. Let A be the adjacency matrix of G. Let | P 1 |

and | P 2 | be respectively the number of edges and the number of paths of length two in G. Let | S T 1 D | be the number of subgraphs

S T 1 D in G (see Table 1 ). Let | C i | be the number of cycles of i nodes in G. Then, | C 3 |, | C 4 | and | C 5 | are given, respectively by 

| C 3 | = 

1 

6 

tr 
(
A 

3 
)
, 

| C 4 | = 

1 

8 

tr 
(
A 

4 
)

− 2 | P 1 | − 4 | P 2 | , 

| C 5 | = 

1 

10 

tr 
(
A 

5 
)

− 3 | C 3 | − | S T 1 S | . 
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Table 1 

Collection of subgraphs in Eq. (4.1) , excluding the paths P 2 , P 3 , P 4 , P 5 , and the cycle C 3 . 

ST1S ST1D ST2S

C4 SC/ SC1S

C5 S1,3 SY

 

 

 

 

 

 

 

 

 

 

 

 

Lemma 4. Let G = ( V, E ) be a simple graph. Let k i be the degree of the vertex i. Let A be the adjacency matrix of G. Let | S 1, 3 |,

| S T 1 S |, | S T 2 S |, | S T 1 D |, | S C / | and | S C 1 S | be the number of subgraphs S 1, 3 , S T 1 S , S T 2 S , S T 1 D , S C / and S C 1 S , respectively, in G (see Table 1 ).

Then, 

| S 1 , 3 | = 

1 

6 

n ∑ 

i =1 

k i ( k i − 1 ) ( k i − 2 ) 

| S T 1 S | = 

1 

2 

(
�
 k − �

 2 

)T 
diag 

(
A 

3 
)

| S T 2 S | = 

1 

4 

((
�
 k − �

 2 

)
◦
(
�
 k − �

 3 

))T 
diag 

(
A 

3 
)

| S T 1 D | = 

1 

2 

�
 1 

T 
(
A 

2 − A 

2(D ) 
)
diag 

(
A 

3 
)

− 6 | C 3 | − 2 | S T 1 S | − 4 | S C/ | 
| S C/ | = 

�
 1 

T ( Q ◦ ( Q − A ) ) 
(
�
 k − �

 2 

)
| S C1 S | = 

�
 1 

T 
(
P − P (D ) 

)(
�
 k − �

 2 

)
− 2 | S C/ | , 

where Q = A 

2 ◦ A, P = 

1 
2 

(
A 

2 ◦ (A 

2 − 1) 
)
, � x is an all-x vector and ◦ denotes the Hadamard product. 

3. Two-walks degree assortativity in graphs and networks 

Let us start by the definition of the degree of a node i , k i . The intuition behind this index is very simple. Every nearest

neighbour of the node i receives an identical weight of 1. Then, we sum the weights of every node adjacent to i to obtain

k i . Mathematically, this corresponds to obtaining the following vector � k after assigning the unit weights to every node: 

�
 k = A 

�
 1 , (3.1) 

where � 1 is an all-ones vector. 

It is customary to consider that not all the neighbours of one particular node are equally important. This is the basis for

instance of Katz centrality index [21] , eigenvector centrality [22] , PageRank [23] , subgraph centrality [24] and so for. Then,

we can consider that every neighbour of the node i is weighted according to its “importance”. Of course, the definition of

that importance will define the way in which we will proceed. In order to consider the current development as an extension

of the concept of node degree we simply weight every node by its own degree. That is, now we consider the vector � k as

the weighting vector for the nodes of the graph. Consequently, an extension of the concept of degree is given by applying a

similar procedure as in (3.1) to � k , 

�
 k 2 = A 

�
 k . (3.2) 

It is straightforward to realize that � k 2 = A (A 

�
 1 ) = A 

2 �
 1 . Then, obviously, the entries of this new vector represent a new

kind of centrality of the nodes which counts the number of two-walks starting at the corresponding node. Consequently,

we suggest the name of “two-walks” degree for the entries of � k . Let us call ˜ k the i th entry of � k in a graph. Notice that ˜ k 
2 i 2 i 



A. Allen-Perkins et al. / Applied Mathematics and Computation 311 (2017) 262–271 265 

Fig. 1. Example of the structural effect that may produce a change from degree disassortative (left panel) to two-walks degree assortative (right panel) in 

a simple graph. Here the nodes are drawn in red if their degree (resp. two-walks degree) is smaller than the average degree, or blue otherwise. The size 

of the node is proportional to the magnitude of this difference. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

accounts for the degree of the node i , i.e., closed walks of length two, as well as for the number of second neighbours of

this node. Then, 

˜ k i = 

∑ 

j∈ N ( i ) 
k j , (3.3)

where N ( i ) is the neighbourhood of the node i , i.e., N ( i ) = { j | ( j, i ) ∈ E } . That is, the two-walks degree ˜ k i represents the

number of weighted neighbours that the node i has, where the weight of the nodes is given by its own degree. 

Let us now define a quantity analogous to the degree assortativity index based on the two-walks degrees instead of on

the node degrees. 

Definition 5. Let G be a connected simple graph with adjacency matrix A and let ˜ k i be the two-walks degree of the vertex

i . The two-walks degree assortativity index of a graph is defined as 

r ˜ k = 

1 
m 

∑ 

( i, j ) ∈ E ˜ k i ̃  k j −
{

1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
˜ k i + ̃

 k j 
]}2 

1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
˜ k 2 

i 
+ ̃

 k 2 
j 

]
−

{
1 
m 

∑ 

( i, j ) ∈ E 
1 
2 

[
˜ k i + ̃

 k j 
]}2 

. (3.4)

Obviously, this quantity tell us how well connected the most important nodes in a graph are. That is, if r ˜ k > 0 , the graph

is two-walks degree assortative, which means that the most weighted nodes in terms of the degree of their neighbours tend

to be connected to each other. On the other hand, if r ˜ k < 0 , the graph is two-walks degree disassortative, which means that

the most weighted nodes in terms of the degree of their neighbours tend to be connected to those with least weight. If

r ˜ k = 0 , neither of these two tendencies is observed and we shall call such graphs neutral. 

In Fig. 1 we represent a graph which is strongly disassortative for the degree ( r k ≈ −0 . 822 ) but it is assortative for the

two-walks degree index ( r ˜ k ≈ 0 . 212 ). We plot the graph with the nodes weighted by the difference between the degree

(resp. two-walks degree) minus the average degree (resp. average two-walks degree). The negative values are coloured in

red and the positive contributions in blue. The size of the nodes is proportional to the absolute value of this difference.

As can be seen in this picture the degree–degree interaction between the nodes (left panel) is dominated by red–blue

interactions, which indicates a large number of interactions between high degree nodes (blue ones) with low degree ones

(red nodes). This of course results in a negative degree assortativity coefficient. On the other hand, for the two-walks degree

plot the graph is dominated by blue–blue and red–red interations (right panel). That is, nodes of high two-walks degree

interact with each other, and low two-walks degree nodes also interact preferentially among them. This effects result in a

two-walks degree assortativity coefficient. 

With the new correlation coefficient introduced here we assess the tendency of neighbourhoods with many interactions

to be connected to other “high-connected” neighbourhoods. However, in order for a graph to display a transition from degree

diassortative to two-walks degree assortative it is necessary that there are separator nodes between the high-degree nodes.

The graph in Fig. 1 has a separator, which is the node of degree 2 connecting both nodes of degree 3 and 5. A separator

must be a low-degree node which connects two or more high-degree ones. Notice that if the number of high-degree nodes

connected to the separator is too high, it will produce an increase in its own degree, which decreases its chances of being a

proper separator. This characteristic – a separator connected to two high-degree nodes – introduces degree disassortativity

to the graph. However, in terms of the second-order correlation a separator allow the two-steps interactions between hubs,

which results in two-walks degree assortativity. Mathematically, it is not difficult to see that the two-walks degree is related

to walks of length two between nodes. 

It is easy to realize that the two-walks degree assortativity can be written in matrix-vector form in the following way: 

r ˜ k = 

�
 1 

T A 

5 �
 1 −

(
�
 1 

T A 

�
 1 

)−1 (�
 1 

T A 

3 �
 1 

)2 (
�
 

�
 

)T �
 

(
�
 

T �
 

)−1 (�
 

T 3 �
 

)2 
(3.5)
k 2 ◦ k 2 A 1 − 1 A 1 1 A 1 
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4. Main result 

Our main result here consists on the determination of the two-walks degree assortativity of a graph in terms of con-

tributing subgraphs of the graph. This allows us to understand this quantity in structural terms for the analysis of real

world systems in further sections of this work. 

Theorem 6. Let G be a simple graph. Then, G is, in terms of two-walks degree, 

(i) assortative if R > 2 | P 2 || P 2 / 1 | 
(| P 3 / 2 | + C + 2 

)2 
, 

(ii) neutral if R = 2 | P 2 || P 2 / 1 | 
(| P 3 / 2 | + C + 2 

)2 
, 

(iii) disassortative if R < 2 | P 2 || P 2 / 1 | 
(| P 3 / 2 | + C + 2 

)2 
, 

where 

R = 4 | P 2 | + 8 | P 3 | + 4 | P 4 | + 2 | P 5 | + 42 | C 3 | + 24 | C 4 | + 10 | C 5 | 
+ 12 | S 1 , 3 | + 4 | S Y | + 22 | S T 1 S | + 4 | S T 2 S | + 4 | S T 1 D | + 12 | S C/ | + 4 | S C1 S | , (4.1) 

| P r/s | = | P r | / | P s | and C = 3 | C 3 | / | P 2 | . 
First, we prove that the denominator of expression (3.5) is always non-negative. 

Lemma 7. Let G be a connected simple graph with adjacency matrix A. Let � k and � k 2 be vectors of the nodes degrees and a vector

of nodes two-walks degrees, respectively. Then, (
�
 k 2 ◦ �

 k 2 
)T 

A 

�
 1 −

(
�
 1 

T A 

�
 1 

)−1 (�
 1 

T A 

3 �
 1 

)2 ≥ 0 (4.2) 

where m is the network’s number of edges, � 1 is an all-ones vector and ◦ denotes the Hadamard product. 

Proof. By the Cauchy–Bunyakovsky–Schwarz inequality: 

(
�
 1 

T A 

�
 1 

)−1 (�
 1 

T A 

3 �
 1 

)2 = 

(
�
 1 

T A 

�
 1 

)−1 

( 

n ∑ 

i =1 

k i ̃  k i 

) 2 

≤
(
�
 1 

T A 

�
 1 

)−1 

( 

n ∑ 

i =1 

k 2 i 

) ( 

n ∑ 

i =1 

˜ k 2 i 

) 

= 

2 | P 1 | + 2 | P 2 | 
2 | P 1 | 

n ∑ 

i =1 

˜ k 2 i = 

n ∑ 

i =1 

˜ k 2 i 

(
1 

n 

∑ n 
i =1 k 

2 
i ∑ n 

i =1 k i 

)
. (4.3) 

Then, we have 

(
�
 k 2 ◦ �

 k 2 
)T 

A 

�
 1 −

(
�
 1 

T A 

�
 1 

)−1 (�
 1 

T A 

3 �
 1 

)2 ≥
n ∑ 

i =1 

˜ k 2 i 

(
k i −

1 

n 

∑ n 
j=1 k 

2 
j ∑ n 

j=1 k j 

)

= 

n ∑ 

i =1 

˜ k 2 i 

nk i 
∑ n 

j=1 k j 
(
nk i − k j 

)
n 

∑ n 
j=1 k j 

. (4.4) 

As G is a connected simple graph, k i ≥ 1 and the maximum degree in the graph is n − 1 , then, nk i − k j ≥ 0 , and hence

the last term is always greater than or equal to zero, which proves the result. �

What remains now for the proof of the main result is to express the numerator N ( r ) of the Pearson coefficient of the

two-walks degree – two-walks degree correlation in terms of subgraphs of the graph (reminding that when the denominator

is equal to zero, the Pearson Correlation coefficient is not defined). We can write N ( r ) as follows: 

N ( r ) = 

1 

m 

∑ 

( i, j ) ∈ E 
˜ k i ̃  k j −

{ 

1 

m 

∑ 

( i, j ) ∈ E 

1 

2 

[
˜ k i + ̃

 k j 
]} 2 

(4.5) 

where ˜ k i and 

˜ k j are the two-walks degrees of nodes i and j , respectively, located at both ends of link ( i , j ) ∈ E . We can now

rewrite the sums in Eq. (4.5) as: 

∑ 

( i, j ) ∈ E 
˜ k i ̃  k j = 

1 

2 

�
 k T 2 A 

�
 k 2 , (4.6) 

∑ 

( i, j ) ∈ E 

(
˜ k i + ̃

 k j 
)

= 

�
 k T 2 
�
 k . (4.7) 
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Fig. 2. Degree and two-walks degree assortativities for all the connected graphs with 9 unlabelled nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let us now find the expressions for the two terms contributing to N ( r ). The first is given by 

1 

m 

∑ 

( i, j ) ∈ E 
˜ k i ̃  k j = 

1 

2 m 

( 2 | P 1 | + 12 | P 2 | + 12 | P 3 | + 4 | P 4 | + 2 | P 5 | + 54 | C 3 | + 24 | C 4 | + 10 | C 5 | 

+ 12 | S 1 , 3 | + 22 | S T 1 S | + 4 | S Y | + 4 | S T 2 S | + 4 | S T 1 D | + 12 | S C/ | + 4 | S C1 S | 
)
, (4.8)

where | P 4 | and | P 5 | are the number of paths of order 4 and 5, respectively, and | S Y | is the number of fragments S Y which

are illustrated in Table 1 . We will give formulas for calculating these fragments for the sake of completeness of the paper. 

For the second term contributing to N ( r ) we have { 

1 

m 

∑ 

( i, j ) ∈ E 

1 

2 

[
˜ k i + ̃

 k j 
]} 2 

= 

1 

( 2 m ) 
2 

(
2 | P 1 | + 4 | P 2 | + 2 | P 3 | + 6 | C 3 | 2 

)
. (4.9)

Thus, we can rewrite N ( r ) as: 

N ( r ) = 

1 

2 m 

(
R − 2 | P 2 || P 2 / 1 | 

(| P 3 / 2 | + C + 2 

)2 
)
, (4.10)

which proves the main result. 

Let us now give the formulas for calculating the subgraphs remaining in the expression of the two-walks degree assorta-

tivity which have not been previously defined. The proofs of these results are based on the strategy developed and explained

in [25] and are not given here as they are lengthy and technical. 

Lemma 8. Let G = ( V, E ) be a simple graph. Let k i be the degree of the vertex i. Let | S Y | be the number of subgraphs S Y (see

Table 1 ). Then, 

| S Y | = 

∑ 

( i, j ) ∈ E 

{(
k i − 1 

2 

)(
k j − 1 

)
+ 

(
k j − 1 

2 

)
( k i − 1 ) 

}
− 2 | S T 1 S | . (4.11)

Lemma 9. Let G = ( V, E ) be a simple graph. Then, the number of subgraphs | P 4 | and | P 5 | in G are given by, respectively, 

| P 4 | = 

1 

2 

�
 1 

T A 

4 �
 1 − | P 1 | − 4 | P 2 | − 2 | P 3 | − 9 | C 3 | − 4 | C 4 | − 6 | S 1 , 3 | − 4 | S T 1 S | , (4.12)

| P 5 | = 

1 

2 

�
 1 

T A 

5 �
 1 − | P 1 | − 6 | P 2 | − 6 | P 3 | − 2 | P 4 | − 27 | C 3 | 

− 12 | C 4 | − 5 | C 5 | − 6 | S 1 , 3 | − 2 | S Y | − 11 | S T 1 S | − 2 | S T 2 S | 
− 2 | S T 1 D | − 6 | S C/ | − 2 | S C1 S | . (4.13)

5. Computational results 

5.1. Small graphs 

In this section we describe the results obtained for all the 261,0 0 0 connected graphs with 9 unlabelled nodes. We have

calculated the degree and two-walks degree assortativities for these graphs (see Fig. 2 ). As we can see there is no trivial

correlation between the two indices, which indicates that the new index does not duplicate the structural information

contained in the degree assortativity and consequently gives some new structural insights about graphs. This conclusion is

also easily obtained by considering the subgraph contributions to both measures. 
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Fig. 3. Degree and two-walks degree assortativities for all the real-world networks studied in this work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to computer calculations 7% of the networks are assortative-assortative by both measures (AA), 60% are

disassorartive–disassortative (DD) and 33% are disassortative by degree and assortative by two-walks degree (DA). The main

observation is that there are no graphs which are degree assortative and two-walks degree disassortative (AD). We conjec-

ture that these graphs cannot exist. Computer calculations show that R � 2 | P 2 | (| P 3 , 2 | + C)(| P 3 , 2 | + C + 2) 2 . Therefore, we can

express the numerator of the neighbourhood assortativity ( Eq. (4.10) ) as follows: 

N ( r ) � 

1 

m 

| P 2 | (| P 3 , 2 | + C − | P 2 / 1 | )(| P 3 , 2 | + C + 2) 2 (5.1) 

Using the results from [11] , if r k ≥ 0, then N ( r ) ≥ 0. The intuition behind this result is very simple. Nodes that belong

to a degree assortativitive network tend to be linked to other nodes with similar degree. Therefore, their two-walks degrees

tend to be similar too. 

Generally, the two-walks degree assortativity depends on the balance between four structural factors: the weighted sum

of subgraphs given by R /| P 2 |, transitivity ( C ), intermodular connectivity (| P 3, 2 |) and relative branching (| P 2, 1 |). The first three

produce a positive contribution to the two-walks degree assortativity of a network, while branching is more likely associated

with disassortative networks. 

5.2. Real-world networks 

In this subsection we study of group of 49 real-world networks representing systems in ecological (E), biological (B),

social (S), technological (T) and socio-economic (SE) environments. The networks are described in the Appendix of this

paper. We have calculated the degree and two-walks degree assortativities for these networks (see Fig. 3 ). According to

these results 14% of the networks are assortative-assortative (AA) according to both measures, 24% are disassorartive–

disassortative (DD) and the majority of networks analysed (61%) are diassortative–assortative (DA). This confirms our pre-

vious observation that there are no graphs/networks which are assortative–disassorartive (AD). The analysis of the net-

works according to the functions shows the following trends: 53% of the ecological networks analysed are DD, 27% are

DA and 20% are AA; 50% of the social networks analysed are DA, 30% are AA and 20% are DD; 80% of technologi-

cal networks are DA, 10% are AA and 10% are DD. Finally, 100% of biological networks considered are DA. They in-

cluded 8 protein-protein interaction networks (PINs), 3 transcription networks and 2 brain networks. This is a remark-

able observation because it is the only single functional class of networks which is formed by one structural class,

i.e., DA. 

An important characteristic of our current approach is that we can understand the structural causes for the different

kinds of assortativity in networks using the interpretation of these quantities in terms of subgraphs of the graph. As we

have seen before an important structural feature of graphs allowing the transition from degree disassortative to two-walks

degree assortative is the presence of separators. It has to be stressed that this is not a unique structural feature of this

kind of networks and more studies are needed to completely understand the structural characterization of this kind of

networks. However, it is easy to visualize the connectors in the small PIN of the bacterium B. subtilis (see left panel in

Fig. 4 ). In Fig. 4 we also illustrate the degree and two-walks degree of the nodes in the food web of ScotchBroom and in

the transcription network of E. coli . All of them displaying DA characteristics. 

6. Conclusions 

Here we have proposed an extension of the concept of degree assortativity to one that account for the correlation

between the degrees of the nodes and their nearest neighbours in graphs and networks. This measure, here named the
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Fig. 4. Illustration of the differences between the degrees and mean degree of every node (top panels) and the same for the two-walks degrees (bottom 

panels) in the protein interaction network B. subtilis , food web of Scotch Broom, and transcription network of yeast from left to right. 

 

 

 

 

 

 

 

 

 

 

 

 

 

two-walks degree assortativity, is expressed in terms of subgraphs of the graph. As we have proved here there are a

few more fragments contributing to the two-walks degree assortativity than to the degree assortativity. This clearly in-

dicates that the new quantity accounts for more structural information than the previous one. We have seen that both

measures are not linearly correlated neither for all the connected graphs with 9 nodes nor for real-world networks. Fur-

ther studies are needed to understand the role of this quantity in the study of real-world problems, as we have seen

here, there are some apparently universal features of some classes of networks in relation to this quantity. For instance,

all real-world biological networks studied here are degree disassortative but two-walks assortative. The implications of

this observation for the study of the biological processes taking place on these networks is far beyond the scope of this

work. 
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Appendix. Real-world network dataset 

The real-world networks used in this paper belong to different domains: ecological (includes food webs and ecosys-

tems), social (networks of friendships, communication networks, corporate relationships), technological (internet, transport,

software development networks), informational (vocabulary networks, citations) and biological (protein–protein interaction

networks, transcriptional regulation networks). The dataset comprises networks of different sizes, ranging from n = 29 to

n = 4941 nodes. The networks are listed in Table 2 . 
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Table 2 

Dataset of real-world networks: network name, domain, n number of nodes, m number of links, 

reference, degree and two-walks degree assortative coefficients. 

No. Dataset Domain n m Ref. r k r ˜ k 

1 Drosophila PIN Biological 3039 3715 [26] −0.060 0.462 

2 Hpyroli Biological 710 1396 [27] −0.243 0.161 

3 KSHV Biological 50 122 [28] −0.058 0.215 

4 MacaqueVisualCortex Biological 30 190 [29] −0.030 0.113 

5 Malaria PIN Biological 229 604 [30] −0.083 0.116 

6 Neurons Biological 280 1973 [31] −0.069 0.187 

7 PIN-Afulgidus Biological 32 38 [32] −0.472 0.154 

8 Pin-Bsubtilis Biological 84 98 [33] −0.486 0.136 

9 PIN-Ecoli Biological 230 695 [34] −0.015 0.397 

10 PIN-Human Biological 2783 6438 [35] −0.137 0.231 

11 Trans-Ecoli Biological 328 456 [36] −0.265 0.330 

12 Transc-yeast Biological 662 1062 [36] −0.410 0.401 

13 Trans-urchin Biological 45 80 [36] −0.207 0.194 

14 Benguela Ecological 29 191 [37] 0.0211 0.153 

15 BridgeBrook Ecological 75 547 [38] −0.668 −0.193 

16 Canton Ecological 108 708 [39] −0.226 −0.123 

17 Chesapeake Ecological 33 72 [40] −0.196 0.081 

18 Coachella Ecological 30 261 [41] 0.0347 0.148 

19 ElVerde Ecological 156 1441 [42] −0.174 0.009 

20 ReefSmall Ecological 50 524 [43] −0.193 −0.127 

21 ScotchBroom Ecological 154 370 [44] −0.311 0.350 

22 Shelf Ecological 81 1476 [45] −0.094 −0.035 

23 Skipwith Ecological 35 364 [46] −0.319 −0.122 

24 StMarks Ecological 48 221 [47] 0.111 0.199 

25 StMartin Ecological 44 218 [48] −0.153 −0.0365 

26 Stony Ecological 112 832 [49] −0.222 −0.115 

27 Ythan1 Ecological 134 597 [50] −0.263 −0.119 

28 World Trade Economic 80 875 [51] −0.392 −0.355 

29 SmallW Informational 233 994 [52] −0.303 −0.251 

30 ColoSPG Social 324 347 [53] −0.295 0.296 

31 CorporatePeople Social 1586 13126 [54] 0.268 0.431 

32 Dolphins Social 62 159 [55] −0.044 0.303 

33 Drugs Social 616 2012 [51] −0.117 0.304 

34 Hi-tech Social 33 91 [56] −0.087 0.191 

35 Geom Social 3621 9461 [51] 0.168 0.356 

36 PRISON-Sym Social 67 142 [57] 0.103 0.332 

37 Sawmill Social 36 62 [58] −0.071 0.243 

38 social3 Social 32 80 [59] −0.119 0.179 

39 Zackar Social 34 78 [60] −0.476 −0.089 

40 electronic1 Technological 122 189 [61] −0.002 0.337 

41 electronic2 Technological 252 399 [61] −0.006 0.355 

42 electronic3 Technological 512 819 [61] −0.030 0.367 

43 Power grid Technological 4941 6594 [62] 0.003 0.599 

44 Software Abi Technological 1035 1736 [63] −0.086 0.208 

45 Software Digital Technological 150 198 [63] −0.228 0.447 

46 Software Mysql Technological 1480 4221 [63] −0.083 0.147 

47 Software-XMMS Technological 971 1809 [63] −0.114 0.397 

48 Software-VTK Technological 771 1369 [63] −0.195 0.126 

49 USA Air 97 Technological 332 2126 [52] −0.208 −0.0 0 0 
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